Integrated and Remote Operations, the Future of Oil and Gas Production

Arne Ulrik Bindingsbø

Innovative concepts for O&M
Stavanger, 6.5. 2009
Outline

- StatoilHydro challenges
- StatoilHydro R&D
- Integrated Operations
- Tail IO
- Virtual world for marine operations
- Conclusions
StatoilHydro challenges

- Deep water
- Arctic
- Aging infrastructure

New Development Solutions
Deepwater challenges

- Atlantic Margin
- Canada
- Brazil
- West Africa
The Arctic Challenge

CLIMATIC CONDITIONS - ICE

POTENTIAL GAPS DETERMINE TIME HORIZONT

AVAILABLE TECHNOLOGY

GEOLOGICAL/PROSPECT UNCERTAINTY

ENVIRONMENT & SOCIETY

StatoilHydro
Three R&D Centres in Norway

- Trondheim
- Bergen
- Kårstø/Porsgrunn

StatoilHydro forskningssenter Trondheim
StatoilHydro forskningssenter Bergen
StatoilHydro forskningssenter Porsgrunn og K-lab
Integrated Operations in StatoilHydro

• Collaboration across
 – Disciplines
 – Assets
 – Geographical boundaries
 – Culture
 – Companies
IO example: Integrated Operations

Work processes

<table>
<thead>
<tr>
<th>Before Integrated Operations</th>
<th>With Integrated Operations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Serial</td>
<td>Parallel</td>
</tr>
<tr>
<td>Single discipline</td>
<td>Parallel</td>
</tr>
<tr>
<td>Dependent of physical location</td>
<td>Independent of location</td>
</tr>
<tr>
<td>Decisions based on experience data</td>
<td>Decisions based on Real-time Data</td>
</tr>
<tr>
<td>Reactive</td>
<td>Proactive</td>
</tr>
</tbody>
</table>

IO example: Integrated Operations

- Work processes
 - Before Integrated Operations
 - Serial
 - Single discipline
 - Dependent of physical location
 - Decisions based on experience data
 - Reactive
 - With Integrated Operations
 - Parallel
 - Multidiscipline teams
 - Independent of location
 - Decisions based on Real-time Data
 - Proactive
Tail IO Project facts and figures

• Collaboration model:
 – Equal effort from StatoilHydro and consortium with ABB, IBM, SKF and Aker Solutions
 – Joint project management
 – Use of Gate model for project execution

• Figures:
 • Main execution period 2006-2008
 – Budget $ 45 M
 • $ 12 M StatoilHydro
 • $ 12 M Consortium
 • $ 8 M from Norwegian Research Council
 • $ 8 M Assets

• Academia:
 – 5 PhD students
 – 5 Post Docs
 – Extensive collaboration with national and international Universities
Tail IO – Technology Areas

- Condition and Performance monitoring
- Common integration architecture
- Robotics technology
- Mobile ICT infrastructure
- Wireless communication
- Collaborative visualization
- Turnarounds and shutdowns

Concepts for safe and cost-effective operations of facilities
F0B Integration Architecture-Target

- Carry out a full-scale pilot of the F0B GODI solution
 - On Statfjord A and Oseberg Field Centre
- Verify value and functionality of solution
 - Support many different work processes
 - Read data from many source systems
 - Automate model management process
 - Support and operate solution
 - Configure to StatoilHydro’s infrastructure
 - Stage implementation or rollout process
- Prepare commercialization and rollout of solution
 - Prepare the ground for StatoilHydro’s MapIT project
 - Support IBM’s commercial launch of the IIF

Global Operation Data Integration

- Demonstrate & verify flexibility and business value
- Demonstrate & verify scalability and maintainability

Drilling & completion
Reservoir & production management
Operations & maintenance
Virtual World for Maritime and Subsea Operations
Reference list, Ormen Lange

Installation of PLET structure

Installation of 30 inch pipeline in PLET structure

Installation of 16 inch spool
Concluding remarks

• The project develops a new generation of processes, methods and tools for operation & maintenance of oil & gas fields

• Many promising & exiting pilots installed

• TAIL IO – A demanding, but rewarding project

• Linking the virtual and real world